Evaluating Comparative Judgment as an Approach to Essay Scoring

Jeffrey T. Steedle and Steve Ferrara

Pearson

DRAFT: DO NOT CITE OR QUOTE

Author Note

The authors work in the Center for Next Generation Learning and Assessment in Pearson’s Research and Innovation Network. Jeffrey Steedle is a Research Scientist. Steve Ferrara is Vice President, Performance Assessment and Head, Center for Next Generation Learning and Assessment.

Correspondence concerning this article should be addressed to Jeffrey Steedle, Pearson, 400 Center Ridge Drive, Austin, TX 78753. Contact: jeffreysteedle@pearson.com
Abstract

As an alternative to rubric scoring, comparative judgment generates essay scores by aggregating decisions about the relative quality of the essays. Comparative judgment eliminates certain scorer biases and potentially reduces training requirements, thereby allowing a large number of judges, including teachers, to participate in essay evaluation. The purpose of this study was to assess the validity, labor costs, and efficiency of comparative judgments as a potential substitute for rubric scoring. An analysis of two essay prompts revealed that comparative judgment measures were comparable to rubric scores at a level similar to that expected of two professional scorers. The comparative judgment measures correlated slightly higher than rubric scores with a multiple-choice writing test. Score reliability exceeding .80 was achieved with approximately nine judgments per response. The average judgment time was 94 seconds, which compared favorably to 119 seconds per rubric score. Practical challenges and recommendations for future research are discussed.

Keywords: essay scoring, comparative judgment, achievement testing
Evaluating Comparative Judgment as an Approach to Essay Scoring

In large-scale assessment programs that administer constructed-response items and tasks, the process of training, calibrating, and monitoring scorers is lengthy and resource intensive. Over one or two days of training, scorers become familiar with each score point on a rubric and learn to identify important features of student responses in a manner consistent with the expert scorer-trainer and with exemplars known as “anchor papers.” Scorers who pass qualification tests are monitored throughout operational scoring to ensure continued scoring accuracy. Despite these rigorous procedures, which are consistent with the recommendations of the Standards for Educational and Psychological Testing (AERA, APA, & NCME, 2014), measurement error associated with “rater effects” is expected (Wolfe & McVay, 2012).

Comparative judgment is a possible alternative to rubric scoring. Generally, the process requires judges to compare objects and make decisions about their relative qualities (e.g., Essay A is higher quality or Essay B is higher quality). Comparative judgment is viewed as a pure form of expert judgment because it involves comparing two like objects, rather than comparing an object to an internalized standard (Gill, Bramley, & Black, 2007). The aggregation of numerous judgments yields estimated locations along a continuum or perceived quality. If desired, these estimates can be anchored to a rubric scale by including anchor papers with fixed scores in the judgment and estimation processes.

Compared to rubric scoring, comparative judgment offers several potential advantages. Judges make relative decisions in comparative judgment, and this eliminates the possibility of exhibiting several common scorer biases (i.e., strictness or lenience, central or extreme tendencies). That is, scorers may disagree about the rubric scores for two essay responses, but they may still agree about which response reflects higher quality. Consequently, it is
unnecessary to train judges to agree exactly with scoring trainers and anchor paper scores, and this could reduce training, qualification, and monitoring requirements. Moreover, relative judgments of academic performance tend to be more accurate than absolute judgments (e.g., Gill & Bramley, 2008), and this could lead to more valid inferences about student proficiency. Finally, relative judgments may be less cognitively demanding and less time consuming, and this could reduce fatigue and allow for collecting more judgments in a given period.

If empirical research supports these advantages, comparative judgment may be an appealing way to involve more teachers in essay evaluation as professional development. When teachers participate in scoring, their productivity is often lower because the scoring is added to regular teaching responsibilities. Moreover, teachers report maximum professional development benefits after scoring approximately 50 student responses (M. Jones, 2014), which is many fewer than would be expected of professional scorers. So, if comparative judgment reduces the barriers to entry to scoring projects, more teachers could engage in evaluating student responses (even for a brief time), thereby increasing the reach of scoring as professional development.

Although some have proposed replacing traditional scoring with comparative judgment (e.g., Pollitt & Elliott, 2003), Bramley and Oates (2011) asserted, “The issue for its deployment depends not least on reaching a judgment regarding its benefit-effort ratio in a specific context” (p. 33). To that end, this study examined the validity, labor costs, and efficiency of comparative judgment scoring. In this study, trained teachers made comparative judgments of essay responses from a state achievement testing program. The analysis estimated comparative judgment measures of essay quality and compared them to rubric scores from professional scorers. The approaches were also compared in terms of time on task and correlation with another measure of writing ability. Additional analyses evaluated the relationship between
reliability estimates and the number of judgments per essay response. In all, results provide insight about the feasibility of offering comparative judgment scoring as an alternative to rubric scoring for large-scale assessment programs.

Comparative Judgment in Educational Research

Thurstone’s (1927) *law of comparative judgment* first provided a method for analyzing comparative judgment data to estimate the distances between objects on a latent measurement scale. Later, Bradley and Terry (1952) and Luce (1959) demonstrated the application of logistic functions to the analysis of comparative judgment data, and Andrich (1978b) showed that Thurstone’s model was equivalent to a Rasch logistic model.

Although Thurstone (1927) asserted that comparative judgment could be applied to the measurement of “excellence of specimens in an educational scale” (p. 1), early applications of comparative judgment often involved psychophysical phenomena (e.g., light or sound intensity), attitudes, or preferences (Pollitt & Elliott, 2003). More recently, however, comparative judgment has been applied to educational assessment, in particular the maintenance of performance standards in the U.K. (Bramley & Oates, 2011). In such studies, experienced examiners compare the relative quality of scripts from different administrations of an examination (a “script” is the body of a student’s responses to an exam). The result is a common scale of perceived quality for scripts from both examinations, which provides information about the consistency of passing standards across forms and over time (e.g., Black, 2008; Bramley, Bell, & Pollitt, 1998).

Comparative Judgment versus Traditional Scoring

For comparative judgment to be seriously considered as an alternative to traditional scoring methods, it would be helpful to demonstrate that comparative judgment measures are...
similar to rubric scores. Most prior studies of maintaining performance standards reported a correlation between comparative judgment measures and rubric scores or grades (Table 1), and these correlations ranged from nearly zero or non-significant (e.g., Bramley et al., 1998; Forster, 2005) to nearly 1.00 (e.g., Bramley, 2005; Raikes, Scorey, & Shiell, 2008). In those studies, judges must compare exams that are unequally difficult, and this may reduce judgment accuracy (Black, 2008; Yim & Shaw, 2009). Besides judgment accuracy, these correlations also depend on factors such as the number of judgments and variance in quality of the objects.

Several studies focused on using comparative judgment as a tool for evaluating student work. For example, comparative judgment has been used to evaluate electronic portfolios (Kimbell et al., 2009), narrative writing samples (Heldsinger & Humphry, 2010), geography essays (Whitehouse & Pollitt, 2012), samples of early writing (Heldsinger & Humphry, 2013), mathematics exam performance (I. Jones & Alcock, 2014; I. Jones, Swan, & Pollitt, 2015), and responses to brief writing tasks (Attali, 2014). In these studies, correlations between comparative judgment measures and rubric scores or grades ranged from .38 to .92 (Table 1). Overall, prior research indicates that, in certain circumstances, comparative judgment measures replicate the relative standings of students based on rubric scores.

Reliability of Comparative Judgment Measures

In general, reliability reflects consistency in scores across testing conditions or, equivalently, the precision of test scores. Some reliability coefficients estimate correspondence between observed scores and “true” or expected scores. However, in comparative judgment studies, where student performance is observed only once and multiple judges evaluate each observation, reliability coefficients reflect consistency between judges’ perceptions of relative
quality (i.e., the ratio of “true” to variance in perceived quality to observed variance in perceived quality). Reliability is expected to increase as judge agreement increases, as the number of judgments increases, and as variance in the perceived quality of the objects increases.

In general, reliability coefficients from prior comparative judgments studies exceeded .90 (Table 1), suggesting strong agreement among judges and precise measures of perceived quality. Based on experience, Pollitt (2004) estimated that 25 comparisons per object would provide sufficient reliability, though studies of maintaining performance standards typically used twice that number of comparisons “to carry out the fairly strict checks on quality that a politically sensitive study of this kind needs” (p. 16). The process can be made more efficient with adaptive comparative judgment, in which an adaptive algorithm uses prior judgments to pair objects of similar quality because such comparisons provide the most information about perceived quality (Pollitt, 2012).

Validity

In educational assessment contexts, the elimination of certain scorer biases is one of the major appeals of comparative judgment (Pollitt, 2004). This elimination gives rise to the possibility that relative judgments are more accurate than absolute judgments of student performance. If true, the aggregation of more accurate judgments could potentially result in more accurate measures of student performance, thereby improving the validity of score interpretations.

Psychological research suggests that relative judgments tend to be more accurate than absolute judgments of the intensity of psychophysical phenomena such as light or sound (Stewart, Brown, & Chater, 2005) and in other judgment tasks such as estimating distances and counting spelling errors (Shah et al., 2014). A limited body of educational research also supports
this notion. In one study, experienced examiners applied A, B, or C grades to history and physics exam performance with accuracy rates of 39% and 25%, respectively (Gill & Bramley, 2008). Their corresponding relative judgment accuracies were 66% and 78%, and judges expressed higher levels of confidence in their relative judgments.

Comparative Judgment Demands

Comparative judgment studies often gather a large number of judgments, so researchers warn about the effects of fatigue and boredom (Gill & Bramley, 2008). Modifications such as ranking and chaining responses may help reduce physical and cognitive burdens. Bramley and his colleagues (1998) suggested replacing pairwise judgments with rank ordering because, for example, rank ordering 10 objects provides 45 pairwise judgments (via the transitive property). Pollitt (2012) proposed “chaining” responses so that judges would only read one new response for each judgment.

Reduction in training time relative to traditional scoring is one possible efficiency of comparative judgment. Comparative judgment studies have been conducted with as little as 30 minutes of training (Heldsinger & Humphry, 2010), and some prior studies provided only written instructions. However, in most cases, the judges were experienced scorers who were familiar with the materials. One study demonstrated that comparative judgment results were very similar regardless of whether the exercise was carried out through the mail or with face-to-face meetings (Black & Bramley, 2008).

With regard to time on task, Pollitt estimated that judges could make 10 comparisons per exam in the time it would take them to score using traditional methods (Pollitt, 2004). In other research, judges reported that comparative judgment was a much faster method of evaluation (Kimbell et al., 2009). Judges in another study rated the process of ranking three exams as
“fairly easy,” and they reported that the process became easier and faster with experience (Black, 2008).

In contrast, judges in a different study reported difficulty rank ordering 12 responses to several different exams (Yim & Shaw, 2009). Likewise, judges have reported stress and difficulty with the task of comparing very long responses (up to 47 pages) from different exams (I. Jones et al., 2015). One study compared judges who rank ordered 10 sets of 5 responses and scorers who evaluated 50 responses using traditional methods (Attali, 2014). There were no significant differences between the judges and scorers in terms of perceived task difficulty, task enjoyment, or time on task. So, prior research suggests that comparative judgments may be faster and easier, but possibly only when comparing a small number of brief responses to a common exam.

Research Questions

To investigate comparative judgment as a possible substitute for rubric scoring, this study was designed to gather evidence to address the following research questions:

1. How closely do comparative judgment measures correspond to rubric scores?
2. Do comparative judgments take less time than rubric scoring decisions?
3. How do comparative judgment measures and rubric scores compare in terms of validity coefficients?
4. How is the reliability of comparative judgment measures associated with the number of judgments per essay response?

In all, results from this study can help inform decisions about future uses of comparative judgment for large-scale achievement testing programs, including the possible use of teachers in the comparative judgment process.
Method

Essay Prompts

This study was conducted using data from two essay prompts administered as part of a state English language arts test for students at grade 11. At least two professionally trained scorers scored essay responses on a holistic 1–4 scale reflecting the following writing qualities: organization, focus and coherence, development of ideas, voice, and conventions of Standard English. The testing program required exact scorer agreement, so additional resolution scores were collected when needed.

Study Judges and Training

The nine judges recruited for this study were secondary school English teachers, none of whom had ever worked as a professional scorer. Four or five judges were assigned to each prompt. A scoring trainer conducted one training session for each prompt via web conference, and the teachers participated from their homes. The training included a discussion of essay quality as defined by the rubric, but at no time was a score point or rubric referenced. Next, the trainer introduced the concept of comparative judgment and discussed judging biases they should avoid (e.g., judging an essay on its content rather than its writing quality).

The trainer used the anchor papers from the original rubric scorer training to generate “anchor pairs.” Following discussions about how different responses compared in quality, the judges independently judged 10 pairs in the online judgment interface (described below). After a discussion of each pair, the judges independently judged another 15 pairs, and the trainer discussed pairs that were judged incorrectly. Based on judgment accuracy, which ranged from 11 to 15 out of 15 correct judgments, all judges qualified for this study. The first training lasted three hours and forty minutes, and the second lasted three hours.
Data Selection and Essay Pairing

A sample of 200 responses was drawn from the pool of available responses for each prompt. To mirror the empirical score distribution, sampling was conducted such that the scores 1, 2, 3, and 4 represented 25%, 40%, 25%, and 10% of the responses, respectively. On these samples of responses, the first and second rubric scorers agreed exactly on approximately 70% of responses. A resolution scorer provided a third score when needed, and this became the recorded score. The first and second scorers correlated .81 and .85 on prompts 1 and 2, respectively. Note that such correlations tend to be inflated because essays are randomly assigned to scorers (i.e., “scorer 1” and “scorer 2” are not unique; each scorer contributes to both “scorer 1” and “scorer 2”).

An automated algorithm paired each response with approximately 16 other responses and with two anchor papers, which amounted to approximately 2,000 comparisons per prompt. The pairing process was designed to pair responses of similar quality using score estimates provided by the Generalized Grading Model (GGM), an automated essay scoring program developed by Knowledge Technologies (kt.pearsonassessments.com). The pairing algorithm paired responses having the same or adjacent GGM scores. For reference, GGM scores correlated .55 with the rubric scores. The GGM tended to overestimate scores because some long, well-written essays received low rubric scores for reasons unknown to the GGM, which focuses on readability, coherence, length, spelling, and vocabulary.

Data Collection

The online comparative judgment interface presented judges with two typed responses, side by side, and they were given the following options: “Response A is Better,” “Similar Quality,” and “Response B is Better.” As suggested by Pollitt (2012), response pairs were
“chained” such that each judgment involved reading only one new response when possible. The judges were limited to judging approximately equal shares of the available pairs, and the judgment interface recorded the duration of each judgment.

Analysis

This section describes how the judgment data were analyzed to estimate the comparative judgment measures of perceived essay quality and how the comparative judgment measures were compared to rubric scores.

Statistical model fitting. The judgment data were modeled using a multivariate generalization of the Bradley-Terry model (Bradley & Terry, 1952) akin to the Rating Scale Model (Andrich, 1978a):

\[P(Y_{AB} = j|\mu_A, \mu_B, \tau) = \pi_{ABj} = \frac{\exp(\sum_{s=1}^{J} [\mu_A - (\mu_B + \tau_s)])}{\sum_{y=1}^{J} \exp(\sum_{s=1}^{J} [\mu_A - (\mu_B + \tau_s)])} \]

In this model, \(\mu_A \) is the location of response A along a continuum of perceived writing quality, and \(\mu_B \) is the location of response B. There are \(J = 3 \) possible response options: prefers B, options equal, and prefers A. The \(\tau_s \) values are location adjustment parameters reflecting the “distance” between response options along the score scale. The distance between “Response A is Better” and “Similar Quality” is assumed to be the same as the distance between “Similar Quality” and “Response B is Better” (i.e., \(\tau_2 = -\tau_3 \)).

The judgment data served as input to OpenBUGS, the open-source version of WinBUGS (Lunn, Thomas, Best, & Spiegelhalter, 2000). This software package implemented Markov Chain Monte Carlo (MCMC) estimation of model parameters. The \(\mu \) parameters were assumed to be normally distributed with a prior distribution having a mean of 2.2 and standard deviation
of 0.93, which reflected the distribution of scores in the sample of 200. The scores of the anchor papers were fixed at 1.0, 2.0, 3.0, or 4.0 so that the estimation procedure would generate scores approximately on the 1–4 rubric scale. The posterior distributions of the μ and τ parameters each included 400 values (that followed 100 “burn-in” iterations), and the means of the posterior distributions served as parameter estimates.

Statistical model evaluation. A reliability coefficient, which estimates the ratio of true score variance to observed score variance in the measures of perceived essay quality, was calculated for the posterior means of the μ parameters (Linacre, 2014). INFIT and OUTFIT statistics were used to examine how well observed data fit with model expectations for each judge and for each student response. INFIT statistics indicate how accurately the model predicts judgments when comparing responses of similar quality, and OUTFIT statistics reflect the predictability of judgments when comparing responses of very different quality. Both statistics have an expected value of 1.0, and values between 0.5 to 1.5 are considered acceptable (Wright & Linacre, 1989). Values greater than 1.5 reflect poor fit, and values less than 0.5 suggest overfitting, which does not distort measurement but may inflate reliability.

Comparing approaches. The estimation procedure generated comparative judgment measures along a continuous scale of perceived essay quality. To facilitate direct comparisons to the rubric scores, the comparative judgment measures were rounded to the nearest integer and bounded by 1 and 4. The comparative judgment measures and the rubric scores were compared in terms of means and standard deviations, and agreement was evaluated using agreement rates and correlations.

Rubric scoring and comparative judgment are also compared in terms of mean time on task. Finally, to compare the approaches in terms of validity coefficients, the comparative
judgment measures and the rubric scores are each correlated with Rasch estimates of writing ability based on the 20-item multiple-choice section of the same writing assessment that included the essays prompts.

Reliability versus number of judgments. A series of random samples were removed from the full data sets to examine the relationship between number of judgments and the reliability of the comparative judgment measures. For each random sample (10% reduction through 80% reduction), the comparative judgment model was refit, and reliability was recalculated. A plot of reliability versus number of judgments indicates how many judgments would be needed to obtain various levels of reliability.

Results

OpenBUGS Output and Fit Statistics

For prompt 1, the comparative judgment measures of perceived writing quality ranged from 0.34 to 4.65 with a mean of 2.40. For prompt 2, the measures ranged from -0.13 to 4.80 with a mean of 2.13. As expected, these values fell roughly within the 1–4 range due to fixing the anchor paper scores. The mean posterior standard deviation, which indicated measurement precision (like the standard error of measurement), was 0.34 for prompt 1 and 0.35 for prompt 2. The reliability of the measures was 0.89 for prompt 1 and .90 for the prompt 2.

The tau parameters for prompt 1 and prompt 2 were (0, 1.31, -1.31) and (0, 1.20, -1.20), respectively. Judges used the middle response category (“Options Equal”) on only 8% of judgments, and it was never the most probable response according to the model.

The INFIT statistics for all judges on both prompts were in the acceptable 0.5–1.5 range. All four prompt 1 judges had OUTFIT statistics in the acceptable range. Three out of five prompt 2 judges had OUTFIT statistics in the acceptable range, and two had OUTFIT statistics
below 0.5. In all, results suggested that none of the judges behaved in a manner inconsistent with consensus views of response quality.

OUTFIT statistics for responses were often below 0.5, which indicated possible overfitting. This was especially true for responses having low or high comparative judgment measures (i.e., around 1.0 or 4.0), and this result might be expected since comparisons between responses of notably different quality should be relatively easy. For prompt 1, 55% of responses had OUTFIT statistics in the acceptable range, and 39% were below 0.5. Of the prompt 2 responses, 49% of OUTFIT statistics were between 0.5 and 1.5, and 49% fell below 0.5. For prompts 1 and 2, 85% and 76% of INFIT statistics were between 0.5 and 1.5, respectively, and nearly all others were below 0.5. A small percentage of responses (1.5–3.5%) had fit statistics between 1.5 and 2.0, and fewer (0–3%) had fit statistics exceeding 2.0. Such responses may have been difficult to judge.

Comparing Approaches

The posterior means were rounded to the nearest integer and restricted to the 1–4 range to make them directly comparable to the rubric scores. Rubric scores and comparative judgment measures agreed exactly on 60.0% of the prompt 1 responses, and they disagreed by one point on 38.5% of responses (Table 2). The correlation between rubric scores and comparative judgment measures was .78. As indicated by the means in Table 2 (2.20 and 2.40), comparative judgment measures tended to be higher than rubric scores for prompt 1. The standard deviations of the score distributions were similar (0.93 and 0.97).

For prompt 2, the exact agreement rate was 64.0%, and the adjacent agreement rate was 33.5%. The scores from the two approaches correlated .76. On prompt 2, the distributions were
quite similar for the rubric scores (mean of 2.20, standard deviation of 0.93) and the comparative judgment measures (mean of 2.21, standard deviation of .98).

Table 3 summarizes time on task for rubric scoring and comparative judgments. Across both prompts, the mean rubric scoring time was nearly two minutes, and the mean comparative judgment time was approximately one and a half minutes. While this result appears to favor comparative judgment, the time on task measures must be interpreted with several caveats. Only certain aggregate statistics were available for the rubric scoring, so the rubric scoring means reflect all student responses, not just the 200 sampled for this study. The comparative judgment means were strongly influenced by outliers (as high as 46 minutes) because the comparative judgment interface did not time out while judges took breaks. Thus, the median time of 62.0 seconds likely provides a better reflection of typical judgment time. In all, results are consistent with the notion that comparative judgments take less time than assigning rubric scores, but the apparent difference could, in part, be explained by variation among the scorers and judges. Mean time on task was calculated for each scorer and each judge, and there were substantial differences among them (see Min and Max in Table 3).

Rubric scores and comparative judgment measures were also compared in terms of validity coefficients. Comparative judgment measures might be expected to correlate more highly with another measure of writing ability simply because the measures are continuous and therefore have greater variance than integer rubric scores. Indeed, the comparative judgment measures correlated .67 and .72 with multiple-choice writing scores for prompts 1 and 2, respectively, whereas the rubric scores correlated .63 and .69 with the multiple-choice test.
Correlations using the rounded comparative judgment measures provide a fairer comparison, and those correlations were still slightly higher (.66 and .71). The differences in the correlations were small (.02–.03), but experience suggests that the correlation between an essay and a multiple-choice test is unlikely to exceed .75, so large increases would have been surprising.

Reliability versus Number of Judgments

To study the relationship between reliability and the number of judgments, random samples of judgments were removed from the data set (10%, 20%,…, 80% reductions while still including all 200 responses), the model was refit, and reliability was re-estimated. Reliability was .89 with 18 judgments per response for prompt 1 (Figure 1), and reliability remained greater than .80 until the average number of judgments was reduced by 50% (nine judgments per response). Results were nearly identical for prompt 2, with .90 reliability using all judgments and reliability of .79 with a 50% reduction. Reliability decreased more rapidly with additional reductions, but it remained above .50 with only three to four judgments per response. Note that a single judgment provides information about two responses, so, if nine judgments per response are needed to obtain reliability of .80, this amounts to approximately 900 judgments for 200 responses (200×9/2).

Follow-Up Analysis Focused on Scaling

The method of this study reflected two assumptions: the anchor response scores were accurate and the 1–4 rubric scale could be considered an equal-interval scale. A follow-up analysis tested these assumptions by freely estimating the comparative judgment measures of the anchor responses. The freely-estimated measures generally followed the expected pattern, with anchor 1s having the lowest measures and anchor 4s having the highest measures, but there were
some notable deviations. For example, the prompt 1 anchor response with the lowest measure was considered a “high 1” by expert scorers, and the “middle 1” anchor had a higher measure than the “low 2” anchor. With prompt 2, the “high 2” had a higher measure than the “middle 3,” and the “low 3” was judged to be better than the “high 3.” Such results are not consistent with the assumption that the anchor scores are accurate, but some of the differences would not be considered statistically significant. Moreover, the judges were not trained by the expert scorer-trainers who selected the anchor papers, so their emphases on different evaluation criteria may have varied. In addition, it may be unreasonable to expect perfect accuracy when sorting responses into twelve categories.

One result was clear: the anchor 4s were consistently judged to reflect the highest quality writing. The separation between the anchor 3s and the 4s was notably greater than the separation between the 1s and 2s and the 2s and 3s. This finding is inconsistent with the assumption that the 1–4 rubric is interval scaled. Still, possible violations of assumptions did not appear to impact results. The comparative judgment measures from the anchored and unanchored calibrations correlated .998 for prompt 1 and .997 for prompt 2.

Follow-Up Analyses Focused on Score Agreement

Agreement between the comparative judgment measures and the rubric scores was in the general range of what is typically expected between two scorers on operational scoring projects, but several factors may have negatively affected agreement in this study. For one, inaccurate GGM scores may have led to poor pairings. For example, if a response with a rubric score of 3 was scored a 2 by the GGM, this response would get paired with few 3s and no 4s. This potential problem was investigated by filtering results to include only responses that were scored
EVALUATING COMPARATIVE JUDGMENT

accurately by the GGM. The exact agreement rate for prompt 1 increased from .60 to .66 (based on 43% of responses), but there was no improvement for prompt 2.

Another potential detriment to agreement was a pairing algorithm constraint on the number of possible pairings for each response. Combined with the non-uniform distribution of scores (especially the small number of responses with a score of 4), some responses were not paired with a set of responses having the same and adjacent scores in both directions. To test this hypothesis, “well paired” responses were identified as those with pairings that included at least six comparisons to responses with the same score and at least three comparisons responses with each adjacent score. When examining only these subsamples of responses, agreement increased from .60 to .67 for prompt 1 (based on 40% of responses), but it did not increase for prompt 2.

Discussion

The primary goal of this study was to examine correspondence between evaluations of student writing quality based on traditional rubric scoring and comparative judgment. Exact agreement rates on writing assessments with four-point rubrics are typically 60–70% (Ferrara & DeMauro, 2006), and results from this study fell within that range. Follow-up analyses revealed that agreement might have been higher if responses had been paired more optimally. Perfect agreement, however, is not necessarily a desirable outcome. Indeed, differences allow one method to potentially support more valid inferences about writing ability. In this study, the comparative judgment measures correlated slightly higher than rubric scores with performance on a multiple-choice writing test.

The English teachers who participated in this study appear to have been successful judges as indicated by their qualification test results, their fit statistics, high reliability coefficients,
agreement between comparative judgment measures and rubric scores, and validity coefficients for the comparative judgment measures. This finding is consistent with a previous study in which comparative judgment measures from teachers and experienced scorers correlated highly (Raikes et al., 2008), and it supports the notion that educators could serve as judges in future implementations and possibly benefit from the experience as professional development.

In terms of time on task, results from this study suggest that an individual comparative judgment takes less time to generate than a rubric score. Of course, comparative judgment requires multiple judgments, and in this study, each essay needed approximately 9 judgments in order to attain reliability of .80. Assuming nine judgments per response, comparative judgment for a single response would require an average of 420.8 seconds \((93.5 \times 9 / 2)\), which is 76% more time than rubric scoring. Using the median judgment time, the average comparative judgment time would be 279 seconds, which is a 17% increase over rubric scoring.

Though the time required to evaluate each response may be longer, comparative judgment may offer greater overall efficiency by reducing training requirements. Training sessions lasted three to four hours in this study, but other comparative judgment studies attained reliable measures of perceived quality with substantially less training. For reference, rubric scorer training for prompts like those used in this study typically lasts between 8 and 12 hours. Reductions in training time could provide enormous efficiency in field-test scoring, wherein a small number of responses to a large number of essay prompts must be scored. The judgments might take longer than rubric scoring, but a large number of lengthy trainings would be avoided.

To replicate this study and to examine other potential uses, a future study will apply comparative judgment in parallel to the operational scoring of a field-test essay prompt. That is, range-finding panelists will use paired comparative judgment to generate a rank ordering of
responses for selecting anchor papers, judges will compare responses to generate measures of student performance, and those measures will possibly serve as input for the training of an automated essay scoring engine. If teachers serve as judges, they will be surveyed about the professional development benefits of participation. This next study will likely apply adaptive comparative judgment (Pollitt, 2012) to improve the efficiency and effectiveness of the pairing process.

In all, comparative judgment shows promise as a methodological component of large-scale assessment programs, but gaining acceptance will be challenging. Test consumers view current scoring procedures as trustworthy (and legally defensible), so any new procedure will need to demonstrate ample validity evidence. In addition, the comparative judgment process runs contrary to current assessment trends toward transparency and criterion referencing. That is, the process of making comparative judgments may be intuitive, but it will be challenging to explain the estimation of comparative judgment measures (as is explaining item response theory ability estimates). In addition, comparative judgment measures are inherently norm-referenced, so unless they are anchored to some criterion-referenced scale, results will not provide actionable feedback to teachers and students. Initially, comparative judgment is likely to gain the most traction in low-stakes assessment contexts such as field-test scoring.
References

<table>
<thead>
<tr>
<th>Study</th>
<th>Use</th>
<th>Study Description</th>
<th>Reliability</th>
<th>Validity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bramley et al. (1998)</td>
<td>Maintaining standards</td>
<td>Judges compared mathematics and English exam from different years</td>
<td>"a [mathematics] scale consistent with the raw mark scale was produced", "little relationship between [English] rater measure and the mark"</td>
<td></td>
</tr>
<tr>
<td>Bramley (2005)</td>
<td>Maintaining standards</td>
<td>Judges each rank ordered 4 sets of 10 reading exams from different years</td>
<td>.97</td>
<td>.92 correlation to 2003 test scores, .95 correlation to 2004 test scores</td>
</tr>
<tr>
<td>Forster (2005)</td>
<td>Maintaining standards</td>
<td>Judges compared English, business, and geography exams</td>
<td>.98–.99</td>
<td>5 out of 6 correlations were non-significant</td>
</tr>
<tr>
<td>Gill et al. (2007)</td>
<td>Maintaining standards</td>
<td>Judges rank ordered sets of 10 English exams</td>
<td>.98</td>
<td>.83–.94 correlation with exam marks</td>
</tr>
<tr>
<td>Black and Bramley (2008)</td>
<td>Maintaining standards exams</td>
<td>Judges rank ordered sets of 10 exams</td>
<td>.81–.92 correlation with exam marks</td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>-----------------------------</td>
<td>-------------------------------------</td>
<td>----------------------------------</td>
<td></td>
</tr>
<tr>
<td>Raikes et al. (2008)</td>
<td>Maintaining standards biology exams from 2007 and 2008</td>
<td>Judges rank ordered sets of 3 biology exams</td>
<td>.95–.97 .91–.96 correlation with exam scores</td>
<td></td>
</tr>
<tr>
<td>Kimbell et al. (2009)</td>
<td>Evaluate performance teachers compared design & technology, science, and geography portfolios in an online interface</td>
<td>.95, .96 .507 correlation with science exam scores</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yim and Shaw (2009)</td>
<td>Maintaining standards exams administered by different examination boards</td>
<td>Judges rank ordered packs of 12 exams</td>
<td>.98 .98, .99 correlation with syllabus %</td>
<td></td>
</tr>
<tr>
<td>Heldsinger and Humphry (2010)</td>
<td>Evaluate performance narrative essays across 7 grade levels</td>
<td>Teachers compared narrative essays</td>
<td>.98 .92 correlation with rubric scores</td>
<td></td>
</tr>
<tr>
<td>Reference</td>
<td>Evaluate performance</td>
<td>Task Description</td>
<td>Correlation</td>
<td>Notes</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>-----------------------</td>
<td>--</td>
<td>-------------</td>
<td>--</td>
</tr>
<tr>
<td>Heldsinger and Humphry (2013)</td>
<td>Evaluate performance</td>
<td>Teachers compared samples of student writing</td>
<td>.99</td>
<td></td>
</tr>
<tr>
<td>I. Jones and Alcock (2014)</td>
<td>Evaluate performance</td>
<td>Students compared each other’s mathematics exams, and results were compared to 20 experts</td>
<td>.73–.97</td>
<td>.20 (students) and .31 (expert) correlation with a calculus test</td>
</tr>
<tr>
<td>Attali (2014)</td>
<td>Evaluate performance</td>
<td>Judges ranked sets of 5 responses to reading and writing short-answer questions</td>
<td>.38–.60</td>
<td>correlation with rubric scores</td>
</tr>
<tr>
<td>I. Jones et al. (2015)</td>
<td>Evaluate performance</td>
<td>Judges compared mathematics and mathematical problem solving exams</td>
<td>.80, .93</td>
<td>.91 correlation with grades, .88 correlation with exam scores</td>
</tr>
</tbody>
</table>
Table 2

Correspondence between Rubric Scores and Comparative Judgment (CJ) Measures

<table>
<thead>
<tr>
<th></th>
<th>Prompt 1</th>
<th></th>
<th>Prompt 2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rubric (rounded)</td>
<td>CJ</td>
<td>Rubric (rounded)</td>
<td>CJ</td>
</tr>
<tr>
<td>Mean</td>
<td>2.20</td>
<td>2.40</td>
<td>2.20</td>
<td>2.21</td>
</tr>
<tr>
<td>SD</td>
<td>0.93</td>
<td>0.97</td>
<td>0.93</td>
<td>0.98</td>
</tr>
<tr>
<td>Exact Agreement</td>
<td>60.0%</td>
<td></td>
<td>64.0%</td>
<td></td>
</tr>
<tr>
<td>Adjacent Agreement</td>
<td>38.5%</td>
<td></td>
<td>33.5%</td>
<td></td>
</tr>
<tr>
<td>Correlation</td>
<td>.78</td>
<td></td>
<td>.76</td>
<td></td>
</tr>
</tbody>
</table>
Table 3

Summary of Time on Task in Seconds

<table>
<thead>
<tr>
<th></th>
<th>Prompt 1</th>
<th></th>
<th>Prompt 2</th>
<th></th>
<th>Both</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Overall</td>
<td>Min</td>
<td>Max</td>
<td>Overall</td>
<td>Min</td>
</tr>
<tr>
<td>Rubric Mean</td>
<td>121.2</td>
<td>88.5</td>
<td>190.5</td>
<td>116.4</td>
<td>73.2</td>
</tr>
<tr>
<td>CJ Mean</td>
<td>116.7</td>
<td>56.1</td>
<td>156.5</td>
<td>70.5</td>
<td>35.0</td>
</tr>
<tr>
<td>CJ Median</td>
<td>83.0</td>
<td>48.0</td>
<td>129.5</td>
<td>45.0</td>
<td>26.0</td>
</tr>
</tbody>
</table>
Figure 1. Plot of reliability versus average number of comparisons (with best-fit reciprocal function).